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In this work we show a theoretical study of the electronic and transport properties of superlattices formed by
a periodic structure of vacancies �antidots� on graphene nanoribbons. The systems are described by a single-
band tight-binding Hamiltonian and also by ab initio total energy density-functional theory calculations. The
quantum conductance is determined within the Green’s function formalism, calculated by real-space renormal-
ization techniques. A series of well defined gap structures on the conductance as a function of the Fermi energy
is observed. This strongly depends on the period of the vacancies on the nanoribbon and on the internal
geometrical structure of the supercell. Controlling these parameters could be possible to modulate the elec-
tronic response of the systems.
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The special electronic behavior and the room-temperature
mechanical stability exhibited by graphene and graphene na-
noribbons �GNRs�, together with the possibility to be pat-
terned using high-resolution electronic lithography, suggest
that these systems have a great potential to be used in new
applications in nanotechnology.1–7 For GNRs, the electronic
properties are defined by the quasi-one-dimensional confine-
ment and the shape of the ribbon edges. The two cases of
maximum symmetry are known as zigzag graphene nanorib-
bons �ZGNRs� and armchair graphene nanoribbons
�AGNRs�. Different approaches to describe the electronic
and transport properties of GNRs may be found in the litera-
ture such as the massless Dirac equation, ab initio schemes,
and simple scenarios based on tight-binding models. Each
one of these models predicts that all ZGNRs are metallic
independently of their width, whereas AGNRs are always
semiconductors with three different families of energy gaps
depending on its width.8–14

Recently, both experimental and theoretical works have
addressed the possibility to create on graphene, a single or a
few number of vacancies, or even a superlattice �SL� of va-
cancies �antidots�.15 Distinct kinds of local modulations have
been proposed to generate repeated patterns of graphene
nanoribbons.16,17 Some interesting results are related with the
magnetic behavior and magnetoconductance oscillations in
graphene with antidots; the long-range magnetic order exhib-
ited in graphene with antidots, even at room temperature,
indicates that these systems can be natural candidates for
spintronics applications and computation.18–22

Here we present a theoretical study of the electronic and
transport properties of AGNR SLs formed by periodic se-
quence of vacancies modulated by different geometrical
structures and sizes. In Fig. 1 we show the different configu-
rations considered in this study: �a� an hexagon-type defect
with six extracted atoms, �b� a symmetric rhomboid-type de-
fect, and �c� an asymmetrical rhomboid-type defect with
eight extracted atoms. Strong modulations of the electronic
and transport properties of these systems are found. With the
presence of the antidots, the electronic band structure and the

density of states �DOS� show the apparition of energy gaps
and new available electronic states. The energy gap structure
is reflected on the conductance of the SLs, which depends on
the period, the number of extracted atoms, and the symmetry
of the systems. All nanostructures have been relaxed using
the direct inversion iterative subspace method23 with a re-
sidual force criteria less than 10−4 hartree /bohr. The elec-

FIG. 1. �Color online� Schematic view of the considered nanor-
ibbon systems; dashed lines marking the interfaces between the
conductor and the right and left leads. Each SL is formed by a
N-AGNR with �a� an hexagon-type defect with six extracted atoms,
�b� a symmetric rhomboid-type defect, and �c� an asymmetric
rhomboid-type defect with eight extracted atoms. The three panels
show the period d=3 of the corresponding SL, measured in units of
the primitive cell of the pristine AGNR.
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tronic band structure and the DOS of each SL were calcu-
lated within ab initio calculations based on the
pseudopotential method and using the local spin density ap-
proximation, taking into account an energy cutoff equal to
150 Ry and a convergence criteria of 10−6 hartree at room
temperature.24 The edges of all nanostructures were passi-
vated with hydrogen atoms. Calculations were made using
the OPENMX code.25

The DOS and the conductance of the considered systems
are also calculated within a single-band tight-binding ap-
proach. In this scheme, the SLs are described by

HT = �
i

�ici
†ci + ��

�ij�
�ci

†cj + H.c.� , �1�

where �i is the on-site energy �taken as the zero of energies�
and �=2.55 eV is the hopping parameter, which is extracted
from the ab initio calculations.

The transport properties of the system are calculated using
the surface Green’s function matching formalism17,26,27

based on real-space renormalization techniques. The system
is separated in three blocks: a central structure and two semi-
infinite leads composed of the same central part that repeats
indefinitely, forming a superlattice structure. The central con-
ductor is composed of a number of atoms that depends es-
sentially on the distance d and the type of defect considered.
It includes the corresponding vacancy �hexagonal or rhom-
boidlike defects�, located in the middle of the cell. The cen-
tral part of the conductor for the case of d=3 is shown in Fig.
1. Dashed lines mark the interfaces between this central part
and the right or left lead.

The conductance is calculated in the linear response ap-
proach using the Landauer formalism28,29 and it is written as

G =
2e2

h
T�EF� =

2e2

h
Tr��LGC

r �RGC
a � , �2�

where T�EF� is the transmission function of an electron
crossing the central conductor, GC

r�a� is the retarded �ad-
vanced� conductor Green’s function, �L,R= i��L,R

r −�L,R
a � are

the coupling between the leads and the conductor, and �L,R
are the self-energies of each lead, given by �L�R�

= �HCL�R��†gL�R�HCL�R�, where HCL are the coupling matrix el-
ements between the central conductor and the leads and gL�R�
is the surface Green’s function of the left �right� semi-infinite
lead. In this scheme the DOS can be written as DOS���=
− 1

� Im�Tr�GC����	, where Tr is the matrix trace symbol.
Ab initio results of the electronic band structure of super-

lattices formed by a N=11 AGNR and three different types
of antidots are shown in Fig. 2. In all cases the number of
extracted atoms of each sublattice A and sublattice B of the
crystallographic structure is the same. For an appropriate
comparison between these systems, we have considered the
same unit cell size for each SL. As a reference, we have
included the pristine N=11 AGNR case. All considered SLs
show a semiconductor electronic behavior with a gap struc-
ture that depends on the number of extracted atoms, the ge-
ometry of the antidots, and the new supercell symmetry. As a
result of the additional electronic confining potentials and the
new periodicity imposed by the antidots, the band structure
of the pristine case is modified. The change in the point
group of the pristine unit supercell due to the presence of the
vacancies in each SL is manifested as a degeneration break-
ing of the states at the edge of the unidimensional Brillouin
zone �X point�. The energy bands for the hexagon-type and
the symmetric rhomboid-type vacancy SL structures show a
similar behavior as a function of the longitudinal wave vec-
tor k. This is due to that both antidot SLs own the same
specular symmetry with respect to the longitudinal axis of
the nanostructure, and the distance from the defects to the
edges of the AGNR is the same in both cases. In other hand,
the energy dispersions of both considered rhomboid-type va-
cancy SLs are very distinct. Despite of the number of ex-
tracted atoms in both systems is the same, the band structures
show great differences. This is mainly not only due to the
lack of specular symmetry with respect to the longitudinal
ribbon axis of the asymmetric rhomboid-type SL but also due
to the particular geometry of this vacancy for which the dis-
tance of the defects with respect to the edges of the ribbon is
shorter than in the symmetric rhomboid-type vacancy. Fi-
nally, the relative distance between two consecutive antidots
in both SLs is different, leading the possibility of distinct
electronic states in the systems. This behavior is more evi-

FIG. 2. Electronic band struc-
ture of the considered systems: �a�
pristine N=11 AGNR, �b�
hexagon-type of SL, �c� symmet-
ric rhomboid-type of SL, and �d�
asymmetric rhomboid-type of SL.
All superlattices have the same pe-
riod d=3 measured in units of the
primitive cell of the pristine
AGNR.
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dent in Fig. 3 which displays results of the DOS of each
considered SLs on a N=11 AGNR obtained by both ab initio
and tight-binding calculations. All considered SLs have the
same period d=3. The pristine case of a N=11 AGNR is
included as a reference �dotted line�. Left panels correspond
to the ab initio calculations, while the right panels corre-
spond to the tight-binding approach. It is clear from Fig. 3
the good agreement in the low energy region between these
two different models. These results indicate that calculations
of the transport properties of the considered SLs based on a
tight-binding approach would be a very good first approxi-
mation to describe the low energy electronic behavior of the
systems. The DOS of the structures with three types of de-
fects, displayed in Fig. 3, corresponds actually to the mean
density of states calculated at the central conductor. All of
them exhibit sequences of superimposed one-dimensional
density of states, with the characteristic Van Hove singulari-
ties. One clearly notices that the DOS is strongly dependent
on the defect symmetry and this should be reflected on the
transport properties of these structures. The spatial electronic
distribution across the superlattice structure may be investi-
gated by calculating the local density of state at different
sites of the system. By performing that we note for some
energy ranges, the electron wave function is completely lo-
calized around the vacancy region, promoting a complete
suppression of the transport. Figure 4 shows the behavior of
the conductance as a function of the Fermi energy for the
three SLs considered above for a period d=3 on a N=11
AGNR, and for comparison we have included the case of the
corresponding N=11 AGNR pristine. It can be observed that

for the asymmetric rhomboid-type SL in the energy range
between 0.4 and 1.0 eV a total conductance suppression oc-
curs. Otherwise, for the symmetric rhomboid-type SL, a de-
localization phenomenon occurs at the same mentioned en-
ergy range, promoting an extra channel and a consequent
increase in one step in the conductance. We then conclude
that by performing different types of defects we can get op-
posite transport effects, which may be of great importance to
tune electronic response in designed devices.

FIG. 5. Conductance as a function of the period d of the
hexagon-type antidot superlattice on a N=11 AGNR. All curves
have been displaced for a better visualization.

FIG. 3. �Color online� Comparison of the DOS calculated by
DFT calculations, displayed in panels �a�–�c�, and by a tight-
binding Hamiltonian, displayed in panels �d�–�f�. All considered
SLs have the same period d=3. As a reference, the DOS of a pris-
tine N=11 AGNR is included in dotted �blue online� curve.

FIG. 4. �Color online� Conductance as a function of the energy
for N=11 AGNR SLs with period d=3. The case of a pristine N
=11 AGNR is also included as reference. All the curves have been
displaced for a better visualization.
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Results of the conductance as a function of the period d of
an hexagon-type SL on an armchair graphene nanoribbon
N=11 are shown in Fig. 5. We have considered different
values for the period of the SL, d=3, 5, 7, 9, and 11. We can
observe that for low energies �
EF
�1 eV� the number of
minibands increases with the SL period. As this period in-
creases, the size of the unit cell augments, and more resonant
states contribute to the conductance in this energy range. For
higher energies �
EF
	1 eV� the conductance shows a more
complex structure due to the increased number of allowed
conductive channels contributing to the transmission.

The obtained results are actually quite similar to the case
of transmission through multibarrier systems, in which quan-
tum interference phenomena drive the transport, leading to
the formation of minigaps and minibands that are dependent
on the number of barrier and the space between them. In the
case of traditional semiconducting superlattices,30 as the dis-
tance between the barrier increases, a large number of bands
and gaps are obtained in the central energy part of the spec-
trum, as well as the size of the central gap decreases as d
increases. This is exactly what is obtained when the period d
is changed in our calculations.

In summary, we have studied the dependence of the elec-
tronic and transport properties of AGNR antidot SLs on the
details of the geometrical configuration of the systems. The
transport behavior of these complex systems is defined by
the new electronic energy states and forbidden energy re-
gions which appear due to the extra electronic confinement
potential and the new types of symmetries imposed by the
periodic vacancies in the lattice. In the actual nanotechnol-
ogy scenario which guarantees, for instance, the controlled
variation in chirality and diameter of carbon nanotubes, lead-
ing to the formation of molecular intrajunctions,31 one cer-
tainly believes that investigation like the presented here,
even considering the simplicity of the model calculation, is
relevant for new proposal of carbon-based device applica-
tions.
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